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1. INTRODUCTION

1.1. Let Xc Rk be compact and let n~ denote the space of polynomials
of (total) degree ~ d in k variables. Then, dim 1t~ = (k dd) and we will
denote this number by T(d, k).

Lagrange interpolation is as follows: Given distinct points Ai E X for
i= 1, ..., T(d, k) and real numbers bi for i= 1, ... , T(d, k), then the Lagrange
interpolating polynomial L E n~ is defined by

for i= 1, ..., T(d, k). (1.1.1)

L exists and is unique if the points {A J do not satisfy a polynomial
relation of degree ~ d. (We will always assume this to be the case.)

1.2. Let Lav be the unique polynomial in 1t~ which satisfies Eq. (1.1.1)
with

bi=O, i#v,

bi =1, i=v.

That is

for i, v = 1, ..., T(d, k). (1.2.1 )

Then

T(d,k)

L(x) = L bvLdv(x).
v~1
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(1.2.2)
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Iff is a function defined on X the Lagrange interpolating polynomial to
f, denoted LAx), is the unique polynomial of degree ~ d which takes on the
same values as f at the points A i' for i = 1, ..., T(d, k). Thus

T(d.k)

LJx) = L f(A v) ldv(X).
v~ 1

1.3. The Lebesgue function is defined by

T(d,k)

AAx) = L Ildv(x)1
v=l

and the Lebesgue constant by

A d = sup AAx).
XEX

(1.2.3)

(1.3.1 )

(1.3.2)

The Lebesgue constant and the Lebesgue function are important
invariants of the interpolation process [6, 7]. For example Ad is the norm
of the operator f ~ L f (where C(X) and n~ are both given the sup norm
on X).

In the case X = [-1, 1] c R the Lagrange interpolation process has
been extensively studied. However, the several variable case is far from
being well understood.

In this paper we will consider the case of equally spaced points in the
simplex (see Section 2 for the precise definition). We will give precise
results for the asymptotic values of the Lebesgue functions (Theorem 4.7)
and the Lebesgue constants (Theorem 4.6).

In the one variable case the polynomials ldv (defined in 1.2) have a sim
ple expression as a product of terms. This is not so, in general, in the case
of several variables. However, it was observed by L. Bos [2] that for the
case of equally spaced points in the simplex, the polynomials ldv have a
simple expression as a product and this fact will be exploited in this paper.
For this reason, the methods of this paper cannot be expected to work in
the general several variable case.

The paper is organized as follows. In Section 2, an expression for
lim(1/d) Ildv(x)1 is given. The starting point for the calculation are the
formulae for ldv(X) as a product. In Section 3 we obtain an expression for

-1
u(x) = lim -;flog Ad(X)

which involves a maximum over a parameter space. We also obtain an
expression for lim(1/d) log Ad which involves maximizing u(x) over the
simplex. In Section 4 these maxima are explicitly calculated.
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The calculations in Sections 2-4 are done in the two variable case, but
the generalization to k variables is straightforward and is briefly indicated
at the end of Section 4.

Bos [2] obtains an estimate on Ad, namely Ad~ (Zdi 1). He shows that,
as the number of variables increases, Ad --+ (Zdi 1). In this paper we study
Ad as d --+ 00 with the number of variables fixed.

J. C. Mason [5] has also studied Lebesgue constants and functions for a
several variable polynomial interpolation process. The interpolation
procedure he studies is not the one defined in 1.1. The procedure he studies
is adapted to the case of product sets.

The results of the paper form part of the announcement [1]. In that
announcement Theorem 2.7 is incorrect as stated. Lemma 3.2 of this paper
is the correct statement.

2. THE SIMPLEX IN R2

2.1. Let

be the unit simplex in R2
•

The equally spaced points of degree d (d an integer ~ 1) are the points of
L1 with coordinates (nld, mid) where nand m are integers. Thus n +m ~ d,
n ~ 0, and m ~ O. There are precisely T(d, 2) such points and the con
siderations of Section 1 apply. For a simplex in general position, the
equally spaced points may be defined by barycentric subdivision (see [2]).

Let A dv for v = 1, ..., T(d, 2) denote the equally spaced points of degree d.
An explicit formula for the polynomials [dv (see 1.2) has been given by Bos
[2]. Namely

where p and X 3 are defined by

(2.1.1 )

Also

and n+m+p=d (2.1.2)

(2.1.3 )
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(2,1.4)

n-l( I JI In JI)log 11dv(xl> x 2 )1 = j~O log Xl -"d -log "d-"d

m-l( I JI 1

m JI)+ j~O log x 2 -"d -log d-"d

+ :t~ (log IX3-~ I-lOg I~-~I)'
As usual, if n (or m or p) is equal to zero the corresponding portion of

the product in (2.1.1) or (2.1.3) is equal to one and the corresponding
portion of the sum in (2.1.4) is equal to zero.

2.2. Now consider a sequence of points Ad,v, (of degree d; respectively)
and suppose they converge to a point (ct, f3) E A. That is Ad,v, = (nid;, midJ
and lim;(nid;) = ct, lim;(midJ = f3.

Furthermore we will suppose that

and (2.2.1)

Under these conditions we will calculate lim; {lldJ log 11d,v,(xI, x 2 )1 (we
will suppress the index i).

We thus must estimate sums of the form (lId) L:;~llog Inld-Jldl and
(lid) L:j~J log Ix - Jldl·

The first sum is essentially a Riemann sum of an integral and the limit is
given in Lemma 2.3. The same is true of the second sum in the case of x > IX

and the limit is given in Lemma 2.5. The second sum, in the case X < r:t. is
slightly more complicated and only an upper limit is given (Lemma 2.6).

2.3. LEMMA. Let n;/d; converge to ct E [0, 1] under the condition (2.2.1).
Then

. 1 n - I Inil f~hm - L log --- = log lex - tl dt.
d~oodj~O d d 0

Proof The function log Inld - tl is negative and decreasing as a
function of t on [0, nldl Thus, comparing the areas of rectangles with the
area between a curve and the t-axis we conclude

1 n-l In JI fn/d In I- L log - - - ~ log - - t dt
d j~O d dod

(2.3.1 )
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and

Thus
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1 n-I In jl f<n-Il/d In I- L: log - - - ~ log - - t dt.
dj=1 d dod

(2.3.2)

~ nil log 1'3:. _ LI = fn
/
d

log 1'3:. - t I dt + 0 (log d).
d j=O d dod d -)

Lemma 2.3 now follows from the following lemma:

(2.3.3 )

2.4. LEMMA. Let °~ a ~ b ~ 1. Suppose that la - bl ~ cld where c is a
constant >°and d an integer ~ 1. Then

f: log Ib - tl dt - J: log la - tl dt =°co~ ~.
Proof IS log Ib - tl dt - J~ log la - t I dt = J~ log s ds. If b ~ 2cld this

is O(1og did). If not, a ~ cld and IJ~ log s dsl ~ Ib - al Ilogal which is
O(1og did)..

2.5. LEMMA. Suppose a < x ~ 1 and nJdl converges to a E [0, 1] under
condition (2.2.1). Then

1 n-I I j I f"lim - L: log x - -d = log Ix - tl dt.
d~oodj~O 0

Proof The proof is similar to Lemma 2.3 and we will not give details.

2.6. LEMMA. Suppose a> 0, x E (0, a] and nJdi converges to a under
conditions (2.2.1). Then

(i) lim(lld)LJ,:-d log Ix-jldl = Jolog Ix-tl dt and, infact,

(ii) (lid) LJ,:-d log Ix- jldl ~Jo log Ix- tl dt+ O(log did).

Proof First note that log Ix - tl, as a function of t, is in L I [0, a] but is
not bounded on [0, a].

Let s be the integer such that Ix - jldl is a minimum for j = 0,1, ..., d.
Suppose sld~x. (The case sld>x is handled in an analogous fashion).
Then, comparing areas of rectangles with the area between a curve and the
t-axis, we have

1 S I j I fS/ddj~1 log x- d ~ 0 log Ix-tl dt (2.6.1 )
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and

1 n- 1 I j I jn/dd I log x-d ~ log Ix- tl dt.
j ~ s + 1 (s + 1 )/d

Thus, since x ~ 1,

343

(2.6.2 )

(2.6.3 )~ ~t~ log IX-~I ~ f:/d

log Ix- tl dt+ 0 Co~~

and statement (ii) of Lemma 2.6 follows, using Lemma 2.5.
To prove (i) of Lemma 2.6 we must obtain lower bounds for

(lid) LJ~d log Ix - jldl for infinitely many values of d. We have

and

Thus

1 s - 1 I j , JS
/
d

- I log x-- > loglx-tldt
d j~O d 0

1 n-l I jl f(n-l)/d- I log x--
d

> log Ix- tl dt.
d

j
_ s + 1 ~d

1 n - 1 I j I In
/
d

(log ~- I log x--
d

> log Ix-tl dt+O -- .
dj~O 0 d

j#s

(2.6.4 )

(2.6.5)

(2.6.6)

Now let Zd= {x E [0, 1JI Ix - jldl > I1d3 for j = 0, 1, ..., d}. If x E Zd then
log Ix-sldl > -3logd, and using (2.6.6) we have

~ nflOg)x_L/>f"/dlOglx-tl dt+o(log~
dj~O d 0 d-j

and using Lemma 2.5 we have, for x E Zb

(2.6.7)

(2.6.8 )1 n - 1 I j I fet (log~- I log x - - > log Ix - tl dt + 0 -- .
dj~O dod

Conclusion (i) of Lemma (2.6) will now follow from (2.6.8), statement
(jj), and Lemma 2.7 below

2.7. LEMMA. For d> 2

([0, 1J -Zd)n ([0,1] -Zd+l)

= {x E [0, 1JIx< (d ~ 1)3 or x> 1 - (d ~ 1)3}'
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Proof Let ~ E ([0, 1] - Zd) (l ([0, 1] - Zd+ d. Then we have, for some
integer Jo, 0 ~Jo ~ d,

(2.7.1 )

and for some integer JI' 0 ~J I ~ d + 1,

Equations (2.7.1) and (2.7.2) imply that

I
Jo(d+ 1)-Jld/ 1 1

d( d + 1) < d3+ (d + I?·

(2.7.2)

(2.7.3 )

Now Jo(d + 1) - JI d is an integer. If it is non-zero (2.7.3) is not satisfied for
d~ 2. If it is zero, then Jo =JI =0 or Jo = d and JI = d + 1 and this proves
Lemma 2.7.

Conclusion of proof of Lemma 2.6. Using Lemma 2.7 the only points
x E [0, 1] not in a set Zd for infinitely many values of d are x = 0 or x = 1.
The case x = 0 is excluded by the hypothesis of Lemma 2.6. In case x = 1
(and hence a= 1), (i) of Lemma 2.6 is a special case of Lemma 2.3 (in fact
with lim rather than lim in the statement).

2.8. We now introduce the function H(x, a) for x E [0, 1], a E [0, 1]
defined by

H(x, a) = (lOg Ix - t Idt - {' log t dt

= {XIog x- (x - a) log(x- a) - a log a,
xlogx+ (a-x) log(a-x)-a log a,

for x~a

for x~a.
(2.8.1 )

Note that H(x, a) is continuous on [0, 1] x [0, 1] and is differentiable
on (0, 1) x (0, 1) for x i= a.

2.9. THEOREM. Let Ad;v; = (nidi' mid;) be a sequence of points (of
degrees di) in J converging to (a, p) E J. Suppose, furthermore that
Inidi - al = O( lid;) and Imidi - /31 = O( lid;). Let y and X3 be defined by

a+/3+y=1 and

Then, if Xi i= O,/or i = 1, 2, 3

-1
lim dlog 11dv(xI, xz)1 = H(x l' a) + H(x z, /3) + H(X3, y).
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Proof Let Pi be defined by mi+ni+Pi=di. Then [p;/d;-}'I =O(l/d;).
Applying (2.3), (2.5), (2.6), the theorem follows.

2.10. Remark. (i) If one of Xj,X2,X3 =0 (say xj=O) we consider a
sequence of the form

(
Om po)

Ad,v,= d/ d;,i '
andpi+mi=di·

Then lim(1/d) log I/dv [= H(X2' [3) + H(x 3 , Y) since in the formula for 'dv
the product involving x j does not occur.

(ii) If xj=O and Ad,v, converges to (a, [3)EA with a>O then Idv='O
for d sufficiently large since, in this case, the expression for Idv(O, X2) given
in (2.1.1) involves zero factors. (Note that n > °for d sufficiently large since
lim(n;/dJ > 0.)

3. LIMITING VALUES FOR THE LEBESGUE FUNCTIONS AND

LEBESGUE CONSTANTS

3.1. We introduce the function

where

w = {(a, [3, y) Ia ~ 0, [3 ~ 0, y~ 0, a + [3 +Y= 1}

(3.1.1 )

(3.1.2)

and x j + X 2 + X3 = 1
Note that since H is continuous then u is continuous. In Section 4 we

will give an explicit expression for u. In this section we will show how the
limiting behaviour of the Lebesgue functions and Lebesgue constants can
be given in terms of u(x 1, X 2)' The reasoning used in this section is similar
to that used by Siciak [8].

Recall that the Lebesgue function is given by

T(d.2)

AAx j , x 2 ) = I I/dJx j , x 2 )[·

v~j

We will denote by Int(LI) the interior of the set Ll introduced in 2.1. That is

(3.1.3)
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Note that if (XI> x2)EInt(L1) then X3 >0. Also we will denote by Bd(L1) the
boundary of ,1. That is

Bd(L1) = {(XI>X2)ER2Ixj =0, x 2=0, or X j +X2= 1}.

3.2. LEMMA. For all (x j , x2)EInt(L1) then

-1
lim d log AAx j, x 2) = u(x j, x 2)·

Proof Fix (x j ,x2)Elnt(L1). Suppose that (cto,/3o,Yo) IS a point at
which the maximum in (3.1.1) is attained. That is

(3.2.1 )

(3.2.2 )

Let Ad,vi = (nidi' mid;) be a sequence of points (of degrees d;) in ,1 such
that

-1
lim d Ilog ldv(x j, x2)1 = H(x j, eto)+ H(x2, /30) + H(x3' Yo)·

By Theorem 2.9 such a sequence always exists for (x I> x 2 ) E Int(L1). Thus

-1
lim d log AAx j , x 2);?; u(x j , X2)'

To prove the opposite inequality we note that it follows from the
definition of AAx j, x 2) that

AAXI> x 2)~ T(d, 2) Max 11dv(XI> x2 )1
v

so that, using (2.6.3) and (2.3.3), we have

(3.2.3 )

Since T(d, 2) = O(d2
) we conclude that

and the proof of Lemma 3.2 is complete.

(3.2.5)
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3.3. LEMMA. Let

V(X2,X3)= Max {H(x2, {3)+H(X3, Y)}·
/3+'1~1

/3 ;;,0.'1;;' 0

Then, if X 2 i= 0 and X 3 i= 0

347

(3.3.1)

Proof The proof uses Remark 2.10 and the methods of 3.2. We omit
the details. The analogous results for lim(l/d) log )'d in case X 2 = 0 or X 3 = 0
are valid.

Now, after a simple change of variables, one sees that for X 2 + X 3 = 1 and
{3+y=l

H(x2, [3) + H(x3, y) = ( log IX2 - tl dt - {' log t dt -:-rlog t dt.

One deduces that for X 2 i= 0

(3.3.2 )

V(x 2 , x 3) = F(x2),

where the function Fis defined in (4.3.4). The maximum of F(x2 ) on [0, 1J
is log 2 and we may conclude that

lim ~log Ad;:?; log 2 (3.3.3 )

if the limit exists.
Essentially then, (3.3.3) is deduced by restricting to the one variable

problem.

3.4. COROLLARY. If(X1 ,X2 )EBd(A) then

Proof

u(O,x 2 )= Max {H(x 2 ,{3)+H(x3,y)}
/3+y,,;;1

/3 ;;'0, '1;;,0

and hence u(O, x 2 );:?; V(X2, X3)'

The analogous statements for the other portions of Bd(A) are valid.
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3.5. LEMMA. Let M = Max(Xl,X2)ELl u(x 1 , x z ).

Then lim(l/d) log A d = M.

Proof Recall that Ad=Max(xI,X2)ELl Ad(X 1 , xz). For each integer d~ 1
let (xf, x~) be a point where the maximum of Ad over L1 is attained. Now,
from (3.2.4) and (3.3), (3.4) we have

1 d d d d (log t!\d log Aix p x z) ~ u(x 1 , x z) + 0 d r
Hence

(3.5.2 )

To complete the proof of Lemma 3.5 we will show that
lim(l/d) log Ad~ M - I> for any 1>; O.

We proceed as follows. Let (x?, x~) be a point of L1 where U assumes its
maximum. That is u(x?, x~) = M. Given any I> > 0 and for d sufficiently
large there exists (x~, x;) close to (x?, x~) such that

U(x~,x;) ~ M - I>

and x: x;, x; each belong to Z d'
Let (a', [3', y') be a point of W such that

u(x~, x;)=H(x~, a') + H(x;, [3') + H(x;, y').

(3.5.3 )

Using (2.6.8) and the proof of Lemma 2.3 we have for appropriate points
A dv that

~ Ilog ldv(x~, x;)! ~ H(x~, a') + H(x;, [3') + H(x;, y') + 0 co~ ~.

and the lemma follows.

4. EXPLICIT EXPRESSION FOR u(x1 , xz)

4.1. Formula (3.1.1) gives an expression for u(x 1 , xz) as a maximum over
a parameter space. To find an explicit expression for U we must study the
following maximum problem.
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g(lX, /3, y) = H(xj, IX) + H(x2, /3) + H(x 3 , y)

We want to find the maximum of g on the set

W = {(IX, /3, y) IIX ~ 0, /3 ~ 0, y ~ 0, IX + /3 + Y = 1};

349

(4.1.1 )

(4.1.2 )

g is continuous on W but not differentiable on W. To find the maximum of
g on W we will use the standard techniques of differential calculus. First we
define certain open subsets of Won which g is differentiable. Namely we
define

Wi = {(IX, /3, y) E WI °< IX < Xl' 0 < /3 < X2' X 3 < Y< 1}

Wj={(IX,/3,y)EW!X j <IX<1, x2</3<1, 0<y<x3 }

Wi = {(1X,/3,Y)E WIO<IX<X j ,X2</3< 1, 0<y<x3 },

(4.1.3 )

(4.1.4 )

(4.1.5)

where Wi, Wi, Wi are defined analogously. If Xi = 0 or 1 for i = 1, 2, 3
some of the above sets will be empty.

First we look for critical points of g on each set Wt and Wi (i = 1, 2, 3)
and find the values of g at those critical points. Then we check the values of
g on the boundaries of these open sets. Since W = u;~ j tV/ u 'Wt the
maximum of g on W will be found among the values of g at the critical
points in each Wt, W;- and the value of g on the boundaries of those sets.

4.2. Using Lagrange multipliers, the critical points of g on Wi satisfy

8H(x j , IX) 8H(X2' /3)
81X 8/3

Using (2.8.1) this becomes

(4.2.1)

log(x j -IX) -log IX = log(x2 - /3) -log /3 = log(y - x 3 ) -log y (4.2.2)

or

--=--=--
IX /3 y

(4.2.3 )

We let A denote the common value of the expression in (4.2.3). Note that
A i= 0 and we have

640/54/3.8

X 2 = /3 + /3)0

X3 =y -yA.

(4.2.4 )
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However, adding, we have
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Since 2 =I- 0 and a + 13 +Y= 1 it follows that

a+f3=Y

and thus

(4.2.5)

Y-!
- 2' (4.2.6)

4.3. Equations (4.2.4) and (4.2.6) imply that X3<! and X1 +X2>!' If
these conditions are not satisfied, there will be no critical point in Wj.
Assuming there is a critical point, on substituting (4.2.4) into the
expression for g we have that the value of g at the critical point is

(a + f3H (1 + 2) log(1 + 2) - 2 log 2} + y{ (1- 2) log(1- 2) + 2 log 2}.

(4.3.1)

Using (4.2.6) this is equal to

H(1 + 2) 10g(1 + 2) + (1 - 2) log(1 - 2) }. (4.3.2)

From (4.2.4) we have 2 = 1 - 2x3 and substituting this into (4.3.2) we
have that the value of g at the critical point is

We introduce the function

F(t) = t log t + (1- t) log(1- t) + log 2.

(4.3.3)

(4.3.4)

The value of g at the critical point in Wj is F(x 3 ). An analogous
calculation shows that the value of g at the critical point of Wt or Wi is
F(xJ for i = 1, 2, 3.

We may thus conclude that

Max g(a, 13, y) ~ Max(F(xd, F(X2), F(X3))'
(IX,P.Y)E W

4.4. Remark. For 0 ~ t ~ 1 it is is a simple exercise to see that

O~F(t)~log2.

The maximum occurs when t =0 or 1, the minimum when t =!.

(4.3.5)
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4.5. THEOREM. For (Xl' x2 )Elnt(L1) then u(x l , X2)= Max(F(xd, F(x 2 ),

F(X3»'

Proof We will prove that one has equality in (4.3.5) by showing that
the values of g on the boundaries of Wt, Wi- (i = 1, 2, 3) are bounded by
the right hand side of (4.3.5).

We will examine the values of g on the boundary of Wj. We will have to
consider various cases.

We note that H(x, a) == 0 for a = 0 or a = X and H(x, a) <; 0 for a;:;: x.
We first examine that portion of the boundary of Wj where iX=X I . It will
be convenient to introduce the function

(4.4.1 )

We must maximize this (for X 2 ,X3 fixed) subject to {3;:;:O, y;:;:O,
{3=y=X2+X3·

Assume 0 < {3 < X2 and X3< Y < 1. Using Lagrange multipliers in a
similar fashion to the computations of 4.2 and 4.3 we find the value of J/J at
the critical point is

and that

(4.4.3 )

Using one variable calculus one finds that the maximum of (4.4.2) con
sidered as a function of X2 for X3<; X2 <; 1- X3 is F(X3), and this maximum
occurs at x2=1-x3' If {3=x2 then Y=X3 and J/J=O. If /3=0 then
y=X2+X3 and J/J=H(X2,X2+X3):::;0.

Next we examine that portion of the boundary where Q( = O.
Assume O<{3<X2' Now

and thus

if {3 > 0;

J/J is therefore an increasing function of X2 and, since Xl <; 1- X3, we have

(4.4.4 )
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Also if [3=0 then Y= 1 and t/J=H(x3, 1)~0. If [3=x2 then Y= 1-X2~X3

and H(X3, 1- X2) ~ O. Thus using the calculations in the previous case

Max t/J(X2,X3,[3,y)=F(X3)'
P+y=1

p;"o, y;"O

(4.4.5 )

This completes the analysis of that portion of the boundary of Wi where
a=O.

The portion of the boundary of Wi where [3 = 0 or [3 = X2 is handled
analogously. Thus we see that

Max g(a, [3, y)=F(x3),
(~,P,y)dvt

The other sets wt, Wi- are handied in a similar manner, For example, one
may show that g is bounded by Max(F(xd, F(x2)) on the boundary of

Wi·
This completes the proof of Theorem 4.5.

4.6. THEOREM. lim d --+ co (lId) log Ad = log 2.

Proof This follows from Theorem 4.5 and Remark 4.4 and Lemma 3.5.

4.7. THEOREM. For (xj, X2) E Int(A), then

Proof This follows from Theorem 4.5 and Lemma 2.3.

4.8. Remark. Theorems 4.6 and 4.7 are valid in the case of k-variables.
Specifically, let A = {x = (XI, ..., Xk) E Rk IXi ~ 0 i ,= 1, ..., k and L~~o Xi ~ 1}.
The points of A of degree d are points with coordinates (nJld, ..., nkld)
where ni are integers ~O and L~~ I ni = d. There are T(d, k) such points
and the considerations of Section 1 apply. We have

4.7(i). THEOREM. For X E Int(A) then lim(lld) log Aix) = Max(F(xd, ...,
F(xd)·

4.6(i). THEOREM. limd --+ co (1Id)logA d=log2.
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